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Abstract. We study the thermodynamical limits that are obtained from a parallel updating of
ferromagnetic spins on a lattice. We investigate the relationships existing between the parallel
model and the sequential model. We compare both of their free energy functions. A long-range
model for which the mean-field theory is correct is also studied. The last part of the article
indicates how parallel updating can be efficiently used in short-range model simulations.

1. Introduction

Monte Carlo simulations of interacting particle systems are traditionally carried out by
using a sequential updating of the spins calledGlauber dynamics(see Liggett, 1985). The
interacting environment of a spin is held fixed while a decision is made about whether or
not to flip it. The neighbours are treated after the spin is updated. Although this algorithm
is easy to implement on sequential computers, it is rather slow and not well adapted to
parallel machines. Many authors have proposed the same simplification of this algorithm
but for different purposes. The simplification consists of simultaneously flipping all spins
using the environment which exists before the spins are flipped. In this new algorithm, all
decisions are made independently given the environment.

Such dynamics have been considered by Dawson (1975) who proved that the parallel
algorithm does not always converge in distribution to the probability measure obtained in
the sequential case.

Koslov and Vasiliev (1980) gave a necessary and sufficient condition for a simultaneous
updating of spins on thed-dimensional lattice (d > 1) to be reversible. A reversible
probability distribution exists if and only if the local dynamics is the Glauber dynamics
associated to a pair potential on the lattice. The authors also gave a characterization of the
set of all invariant probability distributions when the interactions are translation invariant.

In the neural networks terminology, parallel Glauber dynamics associated to a pair
potential is often calledLittle dynamics. It was studied by Peretto (1984) for associative
memories and by Azencott (1996), Fran¸cois et al (1992) for Boltzmann machines.
Parallelized versions of the simulated annealing algorithm have also been investigated by
Trouvé (1988) and Ferrariet al (1993).

In statistical physics, simultaneous updating of spins was suggested by Neumann and
Derrida (1988) to simulate the corresponding Gibbs states on a lattice. They applied their
approach to Ising spins and spin glasses in two dimensions. Using informal arguments,
they concluded that at least the first moment of various thermodynamical quantities were
correctly reproduced. Monte Carlo simulations indicate that the algorithm gives a correct
critical temperature for the square lattice Ising model (see Landau and Stauffer, 1989).
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In this article, we shall study some properties of the free energy function of the
Gibbs states associated to the parallel updating of ferromagnets. In section 3, we shall
consider a model for which the mean-field arguments are exact. This long-range model
will be analogous to the Curie–Weiss model in statistical mechanics (see Ellis, 1985). The
relationships between the parallel mean-field model and the Curie–Weiss model (which is
the sequential mean-field model) will be investigated.

In section 4, we shall consider ferromagnetic models on thed-dimensional lattice and
theoretically justify the existence of the free energy function and the magnetization. We
shall give some examples of short-range models for which the magnetization is the same in
both sequential and parallel algorithms.

Although a parallel simulation does not always produce the desired Gibbs states, we
shall show that it can be efficiently used to simulate Ising models on particular lattices by
significantly reducing the size of the lattice.

2. Parallel dynamics

This section is devoted to the definition of theparallel Glauber dynamicson a finite subset,
3, of the d-dimensional latticeZd , d > 1. A point x ∈ 3 is viewed as a site on which a
spin with valueη(x) = +1 or η(x) = −1 is placed. The interaction between the sites is
described by a ferromagnetic potential

∀x, y ∈ Zd J{x,y} > 0 (1)

which is translation invariant, i.e.

J{x,y} = J (x − y) (2)

whereJ is a function ofZd satisfying

J =
∑
x∈Zd

J (x) <∞. (3)

The model depends on two parameters: the inverse temperatureβ > 0 and the external
field h ∈ R. We define the parallel Glauber dynamics as the discrete time Markov chain
ηt3 (t ∈ N) onX3 = {−1,+1}3 for which the transition probabilities are given by

∀ζ, ξ ∈ X3 P(ηt+1
3 = ζ |ηt3 = ξ) =

∏
x∈3

qx(ξ, ζ(x)) (4)

with

qx(ξ, ζ(x)) =
exp(ζ(x)β(

∑
y∈3 J (x − y)ξ(y)+ h))
Zx(ξ)

(5)

and

Zx(ξ) = exp

(
β

(∑
y∈3

J (x − y)ξ(y)+ h
))
+ exp

(
− β

(∑
y∈3

J (x − y)ξ(y)+ h
))
. (6)

As noticed by the authors cited in the introduction, the previous dynamics is time-reversible
and ergodic. The parallel algorithm converges to a unique probability distribution which is
given by the following formula

∀η ∈ X3 π
par
3,β,h(η) =

exp(−βH par
3,β,h(η))

Zpar(3, β, h)
(7)
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where

H
par
3,β,h(η) = −

1

β

∑
x∈3

ln 2 coshβ

(∑
y∈3

J (x − y)η(y)+ h
)
− h

∑
x∈3

η(x) (8)

and

Zpar(3, β, h) =
∑
η∈X3

exp(−βH par
3,β,h(η)). (9)

Throughout this article, we shall try to compare the result produced by a parallel updating
of spins with the result produced by the classical sequential procedure. We recall that a
sequential algorithm updates a single site at a time and converges to the Gibbs state which
is associated to the following Hamiltonian

∀η ∈ X3 H
seq
3,h(η) = − 1

2

∑
x,y∈3

J (x − y)η(x)η(y)− h
∑
x∈3

η(x). (10)

We shall focus on the relationships existing between the thermodynamical quantities of
both models.

We shall denote by〈.〉3 the mathematical expectation taken with respect to the Gibbs
measure,π3, on the configuration setX3. When necessary, we shall add a superscript to
distinguish between the parallel and sequential quantities. The finite volume magnetization
in 3 is

M(3, β, h) =
∑
x∈3
〈η(x)〉 (11)

and the free energy is

9(3, β, h) = − 1

β
lnZ(3, β, h). (12)

In the sequential case, the thermodynamical limits

mseq(β, h) = lim
3↑Zd

1

|3|M
seq(3, β, h) and ψseq(β, h) = lim

3↑Zd
1

|3|9
seq(3, β, h)

(13)

exist for allβ > 0, h 6= 0 and are related by the following formula

∀β > 0, h 6= 0 mseq(β, h) = − ∂

∂h
ψseq(β, h). (14)

In section 4, we shall justify the existence of such limits in the parallel case. To do so, we
shall exploit thededoublingargument which is stated in the next lemma.

Lemma 2.1.The finite volume Gibbs stateπpar
3,β,h is the projection onX3 of the Gibbs state

onX3 ×X3 associated with the Hamiltonian

∀(η, ζ ) ∈ X3 ×X3 H
(2)
3,h(η, ζ ) = −

∑
x,y∈3

J (x − y)η(x)ζ(y)− h
∑
x∈3
(η(x)+ ζ(x)).

(15)
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Proof. Let η ∈ X3. We develop the expression ofπpar
3,β,h(η) to obtain

π
par
3,β,h(η) =

2|3|

Zpar(3, β, h)

∏
x∈3

cosh

(
β

(∑
y∈3

J (x − y)η(y)+ h
))

exp−βh
∑
x∈3

η(x)

= 1

Zpar(3, β, h)

∑
ζ∈X3

exp(−βH(2)
3,h(η, ζ )).

�

For a finite set3 ⊂ Zd , the configuration spaceX3 × X3 can be identified to the set
X3∪3′ where3′ is a (distinct) copy of3. Thus, we can think of the set of spins3 as being
dedoubled. The interactions on3 induce a new potential on the doubled set3 ∪3′. For
the doubled model, the graph of interactions is bipartite: the spins in3 only interact with
those of3′.

3. Mean-field models

In this section, we shall present mean-field models for the Gibbs states that are obtained
from a parallel simulation of ferromagnetic spins. Mean-field models are non-rigorous
approximations of original models. In a mean-field approximation, one usually considers
the spins as being independent. One replaces the interaction between spins by an interaction
with a collective mean value−16 m 6 +1. For the parallel algorithm, the approximation
consists of replacing the doubled Hamiltonian,H

(2)
3,h, defined in equation (15) by

∀(η, ζ ) ∈ X3 ×X3
H
mf

3,h(η, ζ ) = −
∑
x,y∈3

J (x − y)(η(x)m+mζ(y))− h
∑
x∈3
(η(x)+ ζ(x))

= − (mJ + h)
∑
x∈3
(η(x)+ ζ(x)). (16)

Then, the partition functionZpar
mf (3, β, h) can be explicitly computed

Z
par
mf (3, β, h) =

∑
η∈X3

∑
ζ∈X3

exp
(
−βHmf

3,h(η, ζ )
)

= (2 coshβ(Jm+ h))2|3| . (17)

Sincem must be the mean value of the spinη(x), we have

m = 〈η(x)〉mf3 = tanhβ(Jm+ h). (18)

The parallel partition function is exactly the square of the sequential mean-field partition
function. Both models have the same magnetization,m. We shall now develop some results
concerning a long-range model for which the mean-field approximation is exact.

Let n be a positive integer and3n = {−n,+n}d ⊂ Zd . We denote the setX3n by Xn.
We study the specific free energy of theparallel Curie–Weiss modelwhich is described by
the following finite volume Gibbs state

∀η ∈ Xn π
par
n,β,h(η) =

1

Zpar(n, β, h)

∑
ζ∈Xn

exp(−βH cw
n,h(η, ζ )) (19)
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where

H cw
n,h(η, ζ ) = −

∑
x,y∈3

J
|3n|η(x)ζ(y)−

h

|3n|
∑
x∈3
(η(x)+ ζ(x)). (20)

This model is similar to the classical Curie–Weiss model which can be considered as the
sequential model (see Ellis, 1985). For the Curie–Weiss model, we recall that the finite
volume Gibbs state is associated to the Hamiltonian

∀η ∈ Xn H cw
n,h(η) = −

1

2

∑
x,y∈3

J
|3n|η(x)η(y)−

h

|3n|
∑
x∈3

η(x). (21)

The specific free energyψseq
cw (β, h) can be computed as the solution to the following

variational problem

−βψseq
cw (β, h) = lim

n→∞
1

|3n| lnZ
seq
cw (n, β, h) = sup

a∈R
{β 1

2(J a
2+ ha)− I (a)} (22)

with

I (a) =


1

2
((1− a) ln(1− a)+ (1+ a) ln(1+ a)) if |a| < 1

∞ if |a| > 1.
(23)

Proposition 3.1.We have the following relation between the sequential and parallel Curie–
Weiss models

ψpar
cw (β, h) = 2ψseq

cw (β, h). (24)

Before giving a proof, we shall establish two lemmas. We shall use large deviation results
for which the reader can refer to appendix A.

Lemma 3.1.Let {Wn, n > 1} and {W ′n, n > 1} be R-valued random variables. For all
n > 1, we assumeWn andW ′n to be independent and identically distributed. For alla ∈ R,
we denote

cn(a) = 1

n
lnE[expaWn]. (25)

We assume for alla ∈ R that
(i) for all n > 1, cn(a) <∞,
(ii) c(a) = limn cn(a) <∞ and
(iii) cn(a) is differentiable.
For all n > 1, we denote byQ(2)

n the distribution of the random variable(Wn/n,W
′
n/n).

Then, the sequence{Q(2)
n , n > 1} has a large deviations property with reference sequence

an = n and entropy function

∀(a, b) ∈ R2 I (2)(a, b) = c∗(a)+ c∗(b) (26)

wherec∗ denotes the Legendre–Frenchel transform ofc.

Proof. For all a, b ∈ R, we have

cn(a, b) = 1

n
lnE[exp(aWn + bW ′n)]

= 1

n
ln(E[expaWn]E[expbW ′n])

= cn(a)+ cn(b). (27)

Hence, we havec∗(a, b) = c∗(a) + c∗(b) for all a, b ∈ R. The proof is concluded by a
straightforward application of theorem II.6.1 of Ellis (1985). �
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Now, we have a remark about convex functions.

Lemma 3.2.Let f be a real convex function. If(a, b) ∈ R2 is a solution of the system{
f ′(a) = b
f ′(b) = a (28)

then, we havea = b.

Proof. Let a 6 b. Then,f ′(b) 6 f ′(a) andb 6 a by convexity. �

Proof of proposition 3.1. For all n > 1, we denote byQn the distribution of

Sn(η) = 1

|3n|
∑
x∈3n

η(x). (29)

By lemma 3.1, the sequence{Qn⊗Qn, n > 1} has a large deviations property with reference
sequencean = |3n| and entropy function

∀(a, b) ∈ R2 I (a, b) = I (a)+ I (b). (30)

According to theorem II.7.1 of Ellis (1985), the long-range behaviour of
1
|3n| lnZ(3n, β, h) is determined by the minimum points of

iβ,h(a, b) = I (a, b)− β(J ab + h(a + b)). (31)

These points are the solutions to the system{
I ′(a) = β(J b + h)
I ′(b) = β(J a + h). (32)

SinceI is convex, we have

−βψpar
cw (β, h) = sup

(a,b)∈R2

{β(J ab + h(a + b))− I (a, b)}

= sup
a∈R
{β(J a2+ 2ha)− 2I (a)}

= −2βψseq
cw (β, h). (33)

�

Comments. Proposition 3.1 states that the parallel Curie–Weiss and mean-field models have
the same features in the long-range limit. The magnetization can be explicitly computed
from the variational expression. Thus, we have

mpar
cw = tanhβ(Jmpar

cw + h) (34)

and

mpar
cw = mpar

mf = mseq
cw . (35)
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4. Thermodynamical limits

In this section, we shall focus on the existence of the specific free energy and the
magnetization function for the Gibbs states that result from a parallel updating of
ferromagnetic spins. For a finite subset3 ⊂ Zd , lemma 2.1 showed thatMpar(3, β, h) and
9par(3, β, h) could be computed as the thermodynamical quantities of a ‘bigger’ model.
This model was obtained by dedoubling the set of spins and the set of interactions. A short
calculation shows the connection between both quantities

− ∂9
par

∂h
(3, β, h) = − 1

βZpar(3, β, h)

∂Zpar

∂h
(3, β, h) = 2Mpar(3, β, h). (36)

This easy statement has a deep consequence. The existence of the thermodynamical
quantities that we defined in section 2 can be formally established by using convexity
arguments. These arguments are close to those developed in Georgii (1988) or Ellis (1985).
We shall give the existence result and defer the proof to appendix B.

Proposition 4.1.
(a) For allβ > 0, the limit

ψpar(β, h) = lim
3↑Zd

1

|3|9
par(3, β, h) (37)

exists, it is a concave and pair function ofh ∈ R. It is differentiable forh 6= 0.
(b) For allβ > 0, h ∈ R,

mpar(β, h) = lim
3↑Zd

1

|3|M
par(3, β, h) (38)

exists and forh 6= 0

mpar(β, h) = −1

2

∂ψpar

∂h
(β, h). (39)

Proof. See appendix B. �
Comments. The coefficient12 in equation (39) can be explained in the following manner.
If no interaction exists between the spins, the parallel partition function would be the square
of the sequential one. Then the parallel free energy would be twice the sequential one.
However, according to the law of large numbers the magnetization would be the same.

We now focus on the relationships between parallel and sequential models. We shall
see that in some cases the relation can be written explicitly, i.e. the parallel quantities will
express from the sequential ones. First, we concentrate on ferromagnetic models with the
property that

for all evenk ∈ Zd , J (k) = 0. (40)

Evenk means that the sum of the coordinates ofk is an even integer.
As a relevant situation, we have used the Ising model on thed-dimensional lattice.

Let J be a positive number. The parallel Ising model can be defined through the doubled
Hamiltonian

∀(η, ζ ) ∈ X3 ×X3 H
(2)
3,h(η, ζ ) = −

∑
|x−y|=1

Jη(x)ζ(y)− h
∑
x∈3
(η(x)+ ζ(x)). (41)

The following statement holds.
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Proposition 4.2.For any ferromagnetic model satisfying condition (40)

ψpar(β, h) = 2ψseq(β, h). (42)

Proof. Let 3 be a symmetric hypercube ofZd . The key argument is the following. For
the interaction graph induced onZd by the potentialJ , the chromatic number is 2. Hence,
a partition of3 in two independent subsets31 and32 exists. The importance of such
a property has been noticed for a long time in order to optimize the sequential updating
procedure. This time, we use it to change variables in the parallel partition function. Define
a new configuration,η31ζ32, from η andζ by

∀x ∈ 3 η31ζ32(x) =
{
η(x) if x ∈ 31

ζ(x) if x ∈ 32.
(43)

We have

H
(2)
3,h(η, ζ ) = H seq

3,h(η31ζ32)+H seq
3,h(η32ζ31). (44)

We can compute the parallel partition function in the following way

Zpar(3, β, h) =
∑

η,ζ∈X3
exp−βH(2)

3,h(η, ζ )

=
∑
η∈X3

∑
ζ∈X3

exp−β(H seq
3,h(η31ζ32)+H seq

3,h(η32ζ31))

=
∑
σ∈X3

∑
σ ′∈X3

exp−βH seq
3,h(σ ) exp−βH seq

3,h(σ
′)

= {Zseq(3, β, h)}2 (45)

sinceσ andσ ′ are independent. The result is obtained by letting3 grow toZd . �
Comments. By the previous proposition, the magnetization is the same for both sequential
and parallel Ising models. As stressed in the proof, this result is true wheneverZd can be
separated in two independent sublattices. In such a case, the doubled model contains two
independent versions of the original one. This property fails to hold when the chromatic
number of the interaction graph is greater than 3.

We now study some more complicated situations. The parallel updating will be
performed in models for which the chromatic number is greater than or equal to three.
We emphasize in an indirect manner the need to use parallel simulation. Parallel simulation
allows us to simulate models for which the chromatic number of the interaction graph is
equal to 2 by using a reduced system. The models that we wish to simulate are Ising
models on product graphs with chromatic number 2 (we shall assume the existence of the
thermodynamical functions by the techniques used in appendix B). From proposition 4.2, it
would be sufficient to apply parallel updating of spins without changing anything.

Our technique consists of considering the original graph as the doubled graph (which
is always bipartite) of a parallel model. Thus, parallel updating can be performed on the
corresponding reduced graph. Of course, this procedure is not systematic. It works in some
particular cases. For instance, we consider the Ising model on the graphs

G1 = Z/6Z× Z and G2 = Z/4Z× Z. (46)

It can be easily checked that the reduced graph ofZ/6Z is the cliqueC3 of the order of
3 (i.e. the graphZ/3Z). Then the reduced graph ofG1 is Z/3Z × Z. The reduced graph
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of the hypercube (with eight vertices) is the cliqueC4 of the order of 4. Then the reduced
graph ofG2 is D4 × Z+ whereD4 = C4 for i = 0 andD4 = Z/4Z for i > 1. By the
dedoubling argument, we have

m
par
reduced(β, h) = mseq

G (β, h) (47)

wherempar
reduced(β, h) is the magnetization function of the parallel model on the reduced

graph andmseq
G (β, h) is the magnetization function of the sequential model on the original

graph. The chromatic number of the reduced graph is equal to 3 forG1 and equal to 4 for
G2.

Numerical simulations performed on lattice graphsG1 andG2 for different values of
the parameterβ confirm the later results (figures 1 and 2). We deliberately chose small
graphs as the efficiency of the method is proved by proposition 4.1 in the limit of large
sizes. Furthermore, we did not observe a phase transition for these models.

Figure 1. Magnetization as a function of the external field. 500 spins.β = 0.6.

Figure 2. Magnetization as a function of the external field. 1000 spins.β = 0.8.
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5. Conclusion

The results given in this article constitute a step towards a better understanding of the use
of parallelism in spin systems simulation. We obtained ‘rigorous’ results which concern the
use of parallel updating in ferromagnetic spin systems simulation. We proved the existence
of parallel free energy and magnetization functions. In addition, we gave some relationships
between both the quantities. The study of the Curie temperature of the parallel models by
these quantities is thus relevant. We tried to establish formal links between the parallel and
the sequential quantities. We identified two classes of models for which the relationships
are clear: the mean-field models and the two-coloured lattice models. For such models
parallelism introduces no bias when one is interested in the study of the sequential Curie
temperature. Before concluding, we suggested through examples a different manner of
using parallelism to simulate a two-coloured lattice model. It is often possible to perform
a parallel simulation on a reduced lattice. Doing so we gain by using parallelism and by
dividing the simulation size by two.

Finally, we conclude with the emphasis that the simulation procedure itself was not
studied. To analyse the simulation results, the size-fluctuations of the order parameters
must be taken into account. Moreover, a thorough study would also require the control of
the relaxation time of the parallel Markov chain. Such an analysis is difficult in general due
to the existence of a critical region for the parameters (see Frigessiet al 1993) and will be
given in a forthcoming paper.

Appendix A.

We recall some results concerning large deviations. These results can be found in Ellis
(1985).

LetX be a complete metric space endowed with its Borel algebraB(X ) and{Qn, n > 1}
be a sequence of probability distributions on (X , B(X )).
Definition A.1.The sequence{Qn, n > 1} has a large deviations property if there exists a
sequence{an n > 1} of positive numbersan→∞ and a functionI : X → R+ satisfying

(a) I is lower semi-continuous,
(b) I has compact level sets,
(c) for all closed subsetK

lim a−1
n lnQn{K} 6 − inf

x∈K
I (x). (A1)

(d) for all open subset,O,

lim a−1
n lnQn{O} > − inf

x∈G
I (x). (A2)

The sequence{an} is called the reference sequence andI the entropy function.

Let {Wn, n > 1} beRd -valued random variables (d > 1) and{an, n > 1} be a sequence
of positive numbers such thatan→∞. We denote

∀t ∈ Rd cn(t) = 1

an
lnEn[exp〈t,Wn〉] (A3)

and assume that for alln > 1, cn(t) < ∞ and c(t) = limn cn(t) exists. Letc∗ be the
Legendre–Frenchel transform ofc

∀z ∈ Rd c∗(z) = sup
t∈Rd
{〈t, z〉 − c(t)}. (A4)
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LetQn be the probability distribution ofWn/an. Then, the sequence{Qn, n > 1} has a large
deviations property with reference sequence{an} and entropy functionI = c∗. Moreover,
for all continuous functions,F ,

(a) supX F(x) <∞ implies supX {F(x)− I (x)} <∞
(b) limn

1
an

ln
∫

expanF (x)Qn(dx) = supX {F(x)− I (x)}.

Appendix B.

In this section, we will give a proof of proposition 4.1. We will need the following results.
For all R ⊂ 3, we shall denote

χR(η) =
∏
x∈R

η(x). (B1)

We recall the classical correlation inequalities which hold for ferromagnetic models
GKS1 inequality.For all R ⊂ 3,

〈χR(η)〉 > 0. (B2)

GKS2 inequality.For all R, T ⊂ 3,

〈χR(η)χT (η)〉 > 〈χR(η)〉〈χT (η)〉. (B3)

GHS inequality.For all x, y, z ∈ 3,

〈(η(x)− 〈η(x)〉)(η(y)− 〈η(y)〉)(η(z)− 〈η(z)〉)〉 6 0. (B4)

Proposition B.1.For all β > 0
(a)Mpar(3, β,0) = 0;
(b) Mpar(3, β,−h) = −Mpar(3, β, h) for all h ∈ R;
(c) Mpar(3, β, h) > 0 if h > 0 and|Mpar(3, β, h)| 6 |3|;
(d) Mpar(3, β, h) is a concave function ofh > 0;
(e)Mpar(3, β, h) is an increasing function ofh > 0.

Proof. Let h > 0. According to theGKS 1 inequality, we have

〈χR〉par
3 = 〈χR〉(2)3 > 0. (B5)

According toGKS 2, we have, for allR,R′, T , T ′ ⊂ 3,

〈χR(η)χT (ζ )χR′(η)χT ′(ζ )〉(2)3 6 〈χR(η)χT (ζ )〉(2)3 〈χR′(η)χT ′(ζ )〉(2)3 . (B6)

Let h ∈ R andx, y, z ∈ 3. According toGHS, for any choice

α(x) = η(x) or ζ(x) α(y) = η(y) or ζ(y) α(z) = η(z) or ζ(z) (B7)

we have

〈(α(x)− 〈α(x)〉3)(α(y)− 〈α(y)〉3)(α(z)− 〈α(z)〉3)〉(2)3 > 0. (B8)

Then, it is easily checked that

∂

∂h
〈η(x)〉par

3 > 0 (B9)

and

∂2

∂h
〈ω(x)〉par

3 6 0 (B10)
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which proves (d) and (e).
By checking the other statements, in particular, we have

π
par
3,β,−h(η) =

∑
ζ∈X3

1

Zpar(3, β, h)
exp

{
β
∑
x,y∈3

J (x − y)η(x)ζ(y)− h
∑
x∈3
(η(x)+ ζ(x))

}
=

∑
(−η)∈X3

1

Zpar(3, β, h)
expβ

[ ∑
x,y∈3

J (x − y)(−η(x))(−ζ(y))

+h
∑

(−η(x)− ζ(x))
]

= πpar
3,β,h(−η). (B11)

This proves (a) and (b). �
Proof of proposition 4.1. (a) The existence ofψpar(β, h) is a consequence of a general
result that can be found for instance in Ellis (1985) appendix D 1. Concavity follows from
the Hölder inequality. Leth1, h2 ∈ R andλ ∈ [0, 1], we have

Zpar(3, β, λh1+ (1− λ)h2) =
∑

(η,ζ )∈X3×X3
exp

(
βλh1

{∑
x∈3

η(x)+ ζ(x)
})

× exp

(
β(1− λ)h2

{∑
x∈3

η(x)+ ζ(x)
})

exp(−βH(2)
3,0(η, ζ )) (B12)

and thus

Zpar(3, β, λh1+ (1− λ)h2) 6
{ ∑
(η,ζ )∈X3×X3

exp−βH3,h1(η, ζ )

}λ
×
{ ∑
(η,ζ )∈X3×X3

exp−βH3,h2(η, ζ )

}1−λ
. (B13)

Then, we obtain

9par(3, β, λh1+ (1− λ)h2) > λ9par(3, β, h1)+ (1− λ)9par(3, β, h2). (B14)

Taking the thermodynamical limit,ψpar(β, h) is a concave function ofh.
Parity is a consequence of the relation

H
par
3,β,h(−η) = H par

3,β,−h(η). (B15)

To prove the second statement of proposition 4.1, fixh > 0. Then, we have, according to
relation (36)

1

|3| (9
par(3, β, h)−9par(3, β,0)) = −2

∫ h

0

1

|3|M
par(3, β, s)ds. (B16)

Since 1
|3|M

par(3, β, h) is a concave and bounded function ofh > 0, the limitmpar(β, h)

exists and is continuous. By Lebesgue’s convergence theorem, we have

ψpar(β, h)− ψpar(β, 0) = −2
∫ h

0
mpar(β, s)ds. (B17)

This proves (b) whenh > 0 and a similar argument holds whenh < 0. �
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